Mass spectrometry of monosaccharide sulphate derivatives

ANATOLY I KALINOVSKY, NATALIA I BELOGORTSEVA, SERGEY V MOROZ ANATOLY F PAVLENKO, ANATOLY K DZIZENKO, AND YURY S OVODOV

Pacific Institute of Bio-organic Chemistry, Far East Science Centre, USSR Academy of Sciences, Vladivostok-22 (USSR)

(Received January 3rd, 1976 accepted for publication in revised form, November 22nd, 1976)

Sulphated polysaccharides are widespread in Nature¹, and investigations of this class of biopolymer require methods for identifying sulphated sugars. We have investigated mass spectrometry for this purpose

Monosaccharide sulphates are not sufficiently volatile for mass spectrometry, and we have therefore studied the acetylated sugar methyl sulphates² and chlorosulphates³, which are more volatile Direct introduction into the ion source afforded reproducible mass spectra of the acetylated D-glucose and D-galactose methyl sulphates 1–5 and 8, and the chlorosulphates 6 and 7 The data are given in Table I The spectrum of the 4-methyl sulphate 5 was unsatisfactory, as the compound could not be isolated pure The data in Table I indicate that fragmentation of the acetylated sugar methyl sulphates is similar to that of the hexose penta-acetates⁴

CH₂R⁴

R¹

$$R^1 = R^3 = R^4 = AcO, R^2 = OSO_3Me$$

1 R¹ = R³ = R⁴ = AcO, R² = OSO_3Me

2 R¹ = R² = R³ = AcO, R¹ = OSO_3Me

3 R² = R³ = R⁴ = AcO, R¹ = OSO_3Me

4 R² = R³ = R⁴ = CD_3COO R¹ = OSO_3Me

5 R¹ = R² = R⁴ = AcO, R³ = OSO_3Me

6 R² = R³ = R⁴ = AcO, R¹ = OSO_2CI

7 R¹ = R² = R³ = AcO R⁴ = OSO_2CI

Series A (Scheme 1) starts with loss of AcO-1 to give the A_2 ion followed by loss of the 3-substituent to give A_2 . The formation of subsequent fragments (m/e 281, 263, 169, and 109 for 2, m/e 281, 263, 221, 211, 169, and 109 for 3) depends on the position of the methyl sulphate group. Thus, for 1, the ion formed by elimination of MeOSO₃H and AcOH is not observed, but the ion m/e 263 (A_1-2 AcOH) is present. Hence,

TABLE I
MASS-SPECTRAL DATA FOR COMPOUNDS 1-3 AND 5-7

m/e	Relativ	e inten	sity				m/e Relative intensity							
	1	2	3	5	6	7		1	2	3	5	6	7	
60	13	27	7		100	100	183			4 5	i	10		
64				11	90	38	186	5	2			5	6	
69	8	20	15	78	10	14	187			5			1	
70		17	10	<i>5</i> 3		11	191	6						
71			15	32			192		17	17	28			
73	12	25	10	27	16	16	196						65	
74				45			197	65	67	10	27			
80	10	13		20			198						3	
81	17	38	27	92	18	41	199	11	9	8	100	2		
84		11	10				200	31			18	3	25	
85	9	19	15		17	12	203		3			2		
86				14	15		207	65						
87				36			209	2		100	36			
97		33	52	58	72	18	210	13	12		7			
98	>100		23	94		78	211	• -		17	6	6	2	
99	15	20		58	36		215			- '	6	4	7	
102	5	20		67	9	11	218						25	
103	15	35	33	81	26	28	220	6	37		65			
108	•		-	24			221	3	3	17	9			
109	17	35	28	24	13	22	223	-	_	3 5	-			
112	5	22	3	62		5	225					4	3 5	
113		20	5	31	8	7	228	б	2		4	2	•	
114	12		5		8	5	229	3	2	3 5	3	3	3 5	
115	70	80	30	74	45	80	234	-	_	3	8		-	
116	11	17	50	, ,		9	235			_	5			
125	• •		15				237	65			-			
126	15	17	14	27	29	10	238	6		3				
127	12	13	15	53	13	8	239	_		6 5				
13I	5		15			Ū	241			-			06	
139	7 5	19	75	24	43	8	242	35		7	27	2	21	
140	26	80	• •	20		28	243	7		-	17	_	16	
141	10	15		71		4	245	2 <i>5</i>	5	70	••	34	16	
143		15			8	6	249	12	_	••			08	
144		_		40	8	-	251	•		40	6			
145	18	20	30	40	20	11	252		28	40	12			
149	•	12	35		5	•-	255	15						
151				50	-		256						58	
155	15	33	7	31		11	258						22	
156			•		10	• •	259			9		5		
157	100	100	37	50	28	39	260	25		-		•		
158	20	17				8	262	2						
164		11					263	7	10	6				
167		11	85	31			265	•	10	35				
168			95	~1	11		267	5		4	5	3	06	
169	27	13	28	58	12	6	269	-		-	~	~	035	
173	~	10		-0	-~	2	271	2				2	0 30	
178			5			~	280	2	9	8		~		
182	7		6	11			281	25	85		3			
104	,		U	11			401	ر بند	O J	5	3			

NOTE 475

TABLE I (continued)

m/e	Relat	ive inte	nsity				m/e	Relative intensity							
	1	2	3	5	6	7		1	2	3	5	6	7		
284					87	16	331	1	i	2			0 65		
285						14	333						0 25		
286						0 75	340	1	6						
287						0 75	341	25		17	10				
294	1	47	12	10	3		344						07		
295		14		28			345					0 5			
297	12		3				346						0 3		
298						57	347					1			
300						28	351			1					
301					1		355	0.5			4				
303				2 5			368				3				
307						0 35	369	25		15		0 5	04		
309	1		2		2	0 55	383	17	19	33	3 5				
311	8 0						384	4	3	8					
317	04	15				0 4	387					10	06		
322	2						389					5	03		
323		6	15				403						0 06		
326					1		405						0 025		
327	0 5				1	0 35									

m/e 263 for 3 should appear by loss of AcOH from C-4 and C-6, and should not be formed from 2

Series B and C are chiefly distinguished by the inability of the methyl sulphate group to eliminate as a ketene-like fragment (Scheme 2)

The mass spectrum of 3 also contains peaks of considerable intensity at m/e 245, 139, and 97, and fragments with m/e 157 and 115. The formation of these ions is represented in Scheme 3, this being in agreement with the shifts of the corresponding peaks from the deuterated compound 4.

The mass spectra of 3 and 8 are almost identical. Thus, the mass spectra of the acetates of sugar methyl sulphates are characteristic and reflect the location of the sulphate groups.

476 NOTE

The mass spectrum of the chloro derivative 6 does not contain ions of the B and C series, probably because of the increased electronegativity of the substituent at C-2 The peaks at m/e 126, 168, and 186 are probably due to fragments of unsaturated products of the thermal decomposition of 6

m/e 115

mle 97

Scheme 3

The fragmentation of 7 is similar to that of the tetra-acetate of 6-chloro-6-deoxy- β -D-glucopyranose Our spectrum of the latter compound differs somewhat from that published⁵, in that it contains peaks at m/e 317 (M-CH₂Cl), 323 and 325 (M-Ac), and 331 (M-Cl)

NOTE 477

EXPERIMENTAL

The mass spectra were recorded on CH6 (1 and 2) and LKB 9000S instruments (3-8)

T1c was performed on silica gel with chloroform-acetone (982) and detection by charring with sulphuric acid

Acetylated sugar methyl sulphates (1-5, 8) — The barium salt (0 1 g) of each acetylated sugar sulphate dissolved in methanol (3 ml) was eluted with methanol from a column of Dowex-50W (H^+) resin. The eluate was neutralized with ethereal diazomethane, then kept overnight in a refrigerator, and subsequently chromatographed on a column (13×0.7 cm) of silica gel with chloroform-acetone (97.3) Yield ~ 60 mg

Chlorosulphates — The acetylated sugar chlorosulphates were obtained by a slightly modified procedure³ (a) A solution of 1,3,4,6-tetra-O-acetyl- β -D-glucopyranose (1 g) in chloroform (1 ml) and pyridine (4 ml) at -75-80° was treated dropwise with sulphuryl chloride (2 6 ml) After 15 min, the mixture was poured into aqueous 10% magnesium sulphate (100 ml) at 0° The precipitate was removed and the filtrate was extracted with chloroform The extracts were washed with 5% sulphuric acid, aqueous sodium hydrogen carbonate, and water, dried (Na₂SO₄), and concentrated to give 1,2,4,6-tetra-O-acetyl- β -D-glucopyranose 2-chlorosulphate (0 8 g), m p 102-103°, [α] $_D^{20}$ +98° (c 0 8, chloroform)

Anal Calc for C₁₄H₁₉ClO₁₂S C, 37 6 H, 42, S, 71, Cl, 79 Found C, 377, H, 44, S, 71, Cl, 79

(b) Using a procedure similar to that in (a), 1,2,3,4-tetra-O-acetyl- α -D-glucopyranose (1 g) was converted into 1,2,3,4-tetra-O-acetyl- α -D-glucopyranose 6-chlorosulphate (0 7 g), m p 91–92° (dec), $[\alpha]_{D}^{D0} + 16$ ° (c 0 64, chloroform)

Anal Calc for C₁₄H₁₉ClO₁₂S C, 37 6, H, 4 2, S, 7 1, Cl, 7 9 Found C, 36 95, H, 4 3, S, 7 1, Cl, 7 8

REFERENCES

- 1 D L COOK, S EICH, AND P S CAMMARATA, Arch Int Pharmacodyn Therap, 144 (1963) 1-19
- 2 A F PAVLENKO, A I KALINOVSKY, A K DZIZENKO N I BELOGORTSEVA, AND YU S OVODOV, Khim Prir Soedin, 6 (1973) 793-794
- 3 H J JENNINGS AND J K N JONES, Can J Chem, 43 (1965) 2372-2386
- 4 K HEYNS AND D MULLER, Tetrahedron Lett, (1966) 6061-6067
- 5 O S CHIZHOV A B FOSTER, M JARMAN, AND J H WESTWOOD, Carbohydr Res, 22 (1972) 37-42